Probing local ionic dynamics in functional oxides at the nanoscale.
نویسندگان
چکیده
A scanning probe microscopy technique for probing local ionic dynamics in electrochemically active materials based on the first-order reversal curve current-voltage (FORC-IV) method is presented. FORC-IV imaging mode is applied to a Ca-substituted bismuth ferrite (Ca-BFO) system to separate the electronic and ionic phenomena in this material and visualize the spatial variability of these behaviors. The variable-temperature measurements further demonstrate the interplay between the thermally and electric-field-driven resistance changes in Ca-BFO. The FORC-IV is shown to be a simple, powerful, and flexible method for studying electrochemical activity of materials at the nanoscale and, in conjunction with the electrochemical strain microscopy, it can be used for differentiating ferroelectric and ionic behaviors.
منابع مشابه
Effects of Temperature on Radiative Properties of Nanoscale Multilayer with Coherent Formulation in Visible Wavelengths
During the past two decades, there have been tremendous developments in near-field imaging and local probing techniques. Examples are the Scanning Tunneling Microscope (STM), Atomic Force Microscope (AFM), Near-field Scanning Optical Microscope (NSOM), Photon Scanning Tunneling Microscope (PSTM), and Scanning Thermal Microscope (SThM).Results showed that the average reflectance for a dopant con...
متن کاملDynamic electrostatic force microscopy in liquid media
We present the implementation of dynamic electrostatic force microscopy in liquid media. This implementation enables the quantitative imaging of local dielectric properties of materials in electrolyte solutions with nanoscale spatial resolution. Local imaging capabilities are obtained by probing the frequency-dependent and ionic concentration-dependent electrostatic forces at high frequency (>1...
متن کاملIonically-mediated electromechanical hysteresis in transition metal oxides.
Nanoscale electromechanical activity, remanent polarization states, and hysteresis loops in paraelectric TiO(2) and SrTiO(3) thin films are observed using scanning probe microscopy. The coupling between the ionic dynamics and incipient ferroelectricity in these materials is analyzed using extended Landau-Ginzburg-Devonshire (LGD) theory. The possible origins of electromechanical coupling includ...
متن کاملDevelopment of a bond-valence molecular-dynamics model for complex oxides
A simple ten-parameter interatomic potential model is described that is capable of accurately reproducing the static and dynamical properties of complex oxides. The accuracy of this model stems from the crystal-chemical bond-valence theory of ionic and covalent bonding. The development of a specific variant of this model for ferroelectric PbTiO3 sPTd is discussed in detail, and comparison of th...
متن کاملBonding and Electronic Structure of Minerals
Minerals are crystalline solids, and their properties are governed by quantum mechanics. Density functional theory in the local density approximation or the generalized gradient approximation gives accurate predictions for energetic properties of closed shell systems, as well as ionic/covalent crystals, and open-shelled transition metals and transition metals oxides. The electronic structure an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 13 8 شماره
صفحات -
تاریخ انتشار 2013